On the Classical Coupling between Gravity and Electromagnetism
نویسندگان
چکیده
Coupling between electromagnetism and gravity, manifested as the distorted Coulomb field of a charge distribution in a gravitational field, has never been observed. A physical system consisting of an electron in a charged shell provides a coupling that is orders of magnitude stronger than for any previously-considered system. A shell voltage of one megavolt is required to establish a gravitationally-induced electromagnetic force equal in magnitude to the force of gravity on an electron. The experimental feasibility of detecting these forces on an electron is discussed. The effect establishes a relation between Einstein’s energy-mass equivalence and the coupling between electromagnetism and gravity.
منابع مشابه
Background Independent Relations between Gravity and Electromagnetism
As every circuit designer knows, the flow of energy is governed by impedance matching. Classical or quantum impedances, mechanical or electromagnetic, fermionic or bosonic, topological,... To understand the flow of energy it is essential to understand the relations between the associated impedances. The connection between electromagnetism and gravitation can be made explicit by examining the im...
متن کاملGravitation: global formulation and quantum effects
A nonintegrable phase-factor global approach to gravitation is developed by using the similarity of teleparallel gravity with electromagnetism. The phase shifts of both the COW and the gravitational Aharonov-Bohm effects are obtained. It is then shown, by considering a simple slit experiment, that in the classical limit the global approach yields the same result as the gravitational Lorentz for...
متن کاملCharged-spinning-gravitating Q-balls
We consider the lagrangian of a self-interacting complex scalar field admitting generically Q-balls solutions. This model is extended by minimal coupling to electromagnetism and to gravity. A stationnary, axially-symmetric ansatz for the different fields is used in order to reduce the classical equations. The system of non-linear partial differential equations obtained becomes a boundary value ...
متن کاملStability of higher derivative modifications of Einstein - aether theory
A time-like unit vector field is used to generalize Einstein's gravity. The resulting theory, called the Einstein-aether theory, consists of a minimal coupling between an aether field and gravity. Inspired by the Bopp-Podolsky electrodynamics, which is well-known for removing the singularity at the point charge, we generalized the Einstein-aether theory by adding such a higher order self-intera...
متن کاملSolar constraints on new couplings between electromagnetism and gravity
The unification of quantum field theory and general relativity is a fundamental goal of modern physics. In many cases, theoretical efforts to achieve this goal introduce auxiliary gravitational fields, ones in addition to the familiar symmetric second-rank tensor potential of general relativity, and lead to nonmetric theories because of direct couplings between these auxiliary fields and matter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015